

Innovative Approaches in Foreign Language Learning Using AI and Project-Based Education

Kasimova (Mulladjanova) Nasiba Azimdjanovna Senior teacher, English Education Department, Tashkent State University of Economics, Tashkent, Uzbekistan n.mulladjanova@tsue.uz

Annotation: The current situation of foreign language acquisition and the problems existing in traditional pedagogical models are proposed to achieve higher learner engagement, improved language retention, and adaptive feedback mechanisms. This study aimed at opening new pathways for AI-assisted linguistic competency development that affects curriculum design and instructional methodologies and putting forward corresponding policy recommendations and technological advancements. In this study, the Analytical Hierarchy Process (AHP) regression method in AI-assisted foreign language education combines the project-based learning (PBL) approach based on collaborative problem-solving, real-world application, and digital assessment tools. Based on the innovative design method of AI-driven adaptive learning, the extracted feature representations from student interactions are used to build a more accurate predictive learning performance model. The research results show that the constructed model can systematically analyze language proficiency development trends, and AI-supported language learning is more efficient, more learner-centric, and more scalable to diverse educational contexts.

Keywords: AI-assisted foreign language learning, Adaptive learning technologies, Project-based language education, Machine learning-driven assessment, Reinforcement learning optimization, Context-aware linguistic proficiency

Инновационные подходы в изучении иностранных языков с использованием искусственного интеллекта и проектного обучения

Касимова (Мулладжанова) Насиба Азимджановна Старший преподаватель, кафедра английского языка, Ташкентский государственный экономический университет, Ташкент, Узбекистан n.mulladjanova@tsue.uz

Аннотация: Современное состояние овладения иностранными языками и проблемы, существующие в традиционных педагогических моделях, указывают на необходимость повышения вовлечённости учащихся, улучшения запоминаемости языкового материала и внедрения адаптивных механизмов обратной связи. Целью данного исследования является открытие новых путей развития языковой компетенции с помощью искусственного интеллекта, что оказывает влияние на проектирование учебных программ и методики преподавания, а также формирование соответствующих политических рекомендаций и технологических инноваций. В исследовании используется метод регрессии аналитического иерархического процесса (АНР) в рамках преподавания иностранных языков с поддержкой ИИ, совмещённый с проектно-ориентированным обучением (РВL), основанным на совместном решении задач, применении знаний в реальной жизни и цифровых инструментах оценки. Благодаря инновационному подходу к адаптивному обучению на базе ИИ, характеристики, извлечённые из взаимодействий студентов, используются для построения точной прогностической модели успеваемости. Результаты показывают, что разработанная модель позволяет системно анализировать тенденции развития языковой компетенции, а обучение языкам с использованием ИИ становится более эффективным, ориентированным на учащихся адаптируемым К образовательным контекстам.

Ключевые слова: Обучение иностранным языкам с поддержкой ИИ, Адаптивные технологии обучения, Проектное обучение языкам, Оценка на основе машинного обучения, Оптимизация с помощью обучения с подкреплением, Контекстно-осознанная языковая компетенция

Chet tillarni oʻrganishda sun'iy intellekt va loyiha asosidagi ta'lim orqali innovatsion yondashuvlar

Kasimova (Mulladjanova) Nasiba Azimdjanovna Katta oʻqituvchi, Ingliz tili ta'limi kafedrasi, Toshkent davlat iqtisodiyot universiteti, Toshkent, Oʻzbekiston n.mulladjanova@tsue.uz

Annotatsiya: Chet tilini oʻzlashtirishning hozirgi holati va an'anaviy pedagogik modellar mavjud muammolar asosida yuqori darajadagi oʻquvchi ishtirokini ta'minlash, tilni yaxshiroq eslab qolish va moslanuvchan teskari aloqani yoʻlga qoʻyishni taklif etadi. Ushbu tadqiqot sun'iy intellekt yordamida til kompetensiyasini rivojlantirish uchun yangi yoʻnalishlarni ochish, bu orqali oʻquv dasturi dizayni va ta'lim metodologiyasiga ta'sir koʻrsatish, hamda tegishli siyosiy tavsiyalar va texnologik yangiliklarni ilgari surishni maqsad qilgan. Tadqiqotda sun'iy intellekt yordamidagi chet tili ta'limida tahliliy ierarxiya jarayoni (AHP) regressiya usuli, hamkorlikda muammoni hal qilish, real hayotga tatbiq etish va raqamli baholash vositalariga asoslangan loyiha asosidagi ta'lim (PBL) yondashuvi bilan uygʻunlashtirilgan. Sun'iy intellekt asosidagi moslanuvchan oʻqitishning innovatsion dizayn uslubiga koʻra, talabalar bilan oʻzaro aloqadan olingan xususiyatlar asosida oʻquv natijalarini oldindan aniqroq bashorat qilish modeli quriladi. Tadqiqot natijalari shuni koʻrsatadiki, qurilgan model til kompetensiyasining rivojlanish tendensiyalarini tizimli ravishda tahlil qilishi mumkin va sun'iy intellektga asoslangan til oʻrganish samaraliroq, oʻquvchiga yoʻnaltirilganroq va turli ta'lim kontekstlariga kengroq moslashtirilgan hisoblanadi.

Kalit soʻzlar: Sun'iy intellekt yordamidagi chet tilini oʻrganish, Moslanuvchan oʻqitish texnologiyalari, Loyiha asosidagi til ta'limi, Mashinaviy oʻrganishga asoslangan baholash, Mustahkamlovchi oʻrganishni optimallashtirish, Kontekstga mos til kompetensiyasi

Introduction

The rapid advancement of artificial intelligence characterized by machine learning algorithms and adaptive learning technologies has promoted the continuous evolution of the methodologies, assessment mechanisms, and curriculum structures of foreign language education and intelligent tutoring systems (Azamatova et al., 2023). Language acquisition is analogous to the economic concept of knowledge capital accumulation (Shevchenko et al., 2023). Just as a market economy allows businesses to compete and innovate, a personalized learning environment allows students to develop linguistic competencies for real-world applications (Rostam et al., 2024). Recent work by AI researchers and linguists has shown that gains in language proficiency have been large: rivaling or exceeding traditional classroom instruction for many learners in diverse educational settings.

The development of AI-driven collaborative learning is not sound, and relevant pedagogical information cannot be disseminated efficiently and effectively, which makes it difficult to integrate major original findings; the application and transformation efficiency of intelligent learning achievements is low, the duplicate use and misallocation of educational resources are serious, and the accessibility, adaptability, scalability, personalization, and automation cannot be effectively united to enhance language learning outcomes (Moreno, 2023).

The issues with the existing pedagogical models are first observed from the cognitive science viewpoint and then evaluated from the technological innovation perspective to see what learning engagement issues these challenges may bring to the higher education sector (Amonova et al., 2023).

On a practical level, the integration of intelligent tutoring systems, the optimization of language assessment methods, and the ways machine learning models have transformed the design, delivery,

and evaluation of language instruction are all additional challenges of the AI-assisted education landscape algorithmic bias, data privacy concerns, accessibility disparities, and technological dependency (Shevchenko, 2023).

It has long been argued that "the main barrier of traditional language education is the continued rigidity of curriculum structures, mainly content standardization, following conventional pedagogical paradigms (Pokrivčáková, 2019). The new findings about AI-driven feedback mechanisms suggest that they may have subtly been one of the key drivers of personalized learning adoption, and thus that students with better access to adaptive content may have had a significant advantage in linguistic competency development (Yunina, 2023).

As previous work has shown, relying on reinforcement learning models can provide significant if often resource-intensive benefits for adaptive learning environments (Gkountara et al., 2022). And, since the scalability of AI-assisted education is often infrastructure constrained this also means that students from particular socioeconomic backgrounds may be advantaged when they can build upon a stronger digital learning ecosystem (Liu, 2023).

Finally, we observe that contributions to AI-driven language instruction have mimicked larger technological shifts, with contributions coming predominantly from leading research institutions in North America and Europe, but with that regional dominance fading in recent decades as Asia and emerging economies have grown in importance (Wu et al., 2024).

At present, there is still no method that comprehensively considers the adaptive effectiveness of AI-based foreign language instruction in the context of higher education to conduct systematic research, which is insufficient for accurately grasping the characteristics of AI-enhanced linguistic interactions affecting proficiency outcomes and interpreting and predicting the evolutionary trajectory of the digital language learning landscape (Dooly et al., 2016).

Therefore, based on the original research, this article systematically examines the multidimensional factors affecting foreign language acquisition in the AI-driven educational paradigm, relying on the longitudinal dataset of student learning behaviors, and comprehensively using the research method of Analytical Hierarchy Process (AHP) and reinforcement learning optimization to extract and construct the characteristics of relevant educational innovations (Sujatna et al., 2024).

The goal of constructing a predictive learning model is to offer personalized linguistic support to students, which has recently been education policymakers' top priority in developing a next-generation language learning framework. Vigorously promoting AI-based personalized instruction has become an important driving force for higher education institutions to build a new adaptive curriculum that focuses on real-world language application and learner engagement (Son et al., 2023).

We take the intelligent language learning framework as the observation object, sort out and categorize the existing pedagogical problems in the field of AI-assisted foreign language education, and then apply the AHP-Regression analysis and method previously summarized to propose strategies for the prevention of systemic learning inefficiencies that commonly exist in traditional pedagogical models (Belaid et al., 2024).

This method has higher accuracy and scalability in language instruction and adaptive assessment, so as to effectively grasp the relevant learning trajectories affecting student proficiency and accurately predict long-term language acquisition trends.

Methods

Recognizing the importance of creating adaptive learning pathways for AI-assisted language education, it is proposed that this study create a comprehensive research framework that includes longitudinal data analysis, machine learning-based feedback mechanisms, and AHP-Regression modeling (Divekar et al., 2021). A large-scale survey by leading AI education researchers asked people how familiar they were with AI-driven foreign language learning platforms from North America, Europe, Asia, and emerging economies (Madjid, 2022).

We also gather the learning trajectory data for each participant in our data, although this process is more involved. We collected data that trace language proficiency development of the student cohorts (Font de la Vall et al., 2023).

A full 82% of survey respondents said they were familiar with adaptive AI-driven language learning content, compared with 67% for traditional classroom-based instruction content and 45% for rule-based digital learning and static content-based instruction content.

We sourced research articles 650 pages, including peer-reviewed journal studies and conference proceedings, institutional reports and white papers 250 with AI-driven education models and 400 with AHP and reinforcement learning applications who provided quantitative and qualitative insights.

We augment our data with historical learning datasets that did no major AI-driven developments until we have the 10 largest educational datasets in the field of foreign language acquisition by region and institutional framework. A dataset entry was included in the data if at least one expert in AI-driven pedagogy felt it was important enough to include and if the methodological approach, as well as the learning analytics solutions, were provably rigorous and replicable.

Given the breadth of what is included as a pedagogical innovation from adaptive AI content to project-based instruction to reinforcement learning algorithms and the broad objective of increasing the effectiveness of foreign language instruction, quantifying the learning impact is challenging. Prior research describes the student performance as being a nonlinear and adaptive process of "context-aware progression," which has limited the traditional education system's ability to identify optimal language acquisition opportunities outside structured curricula and to adapt their instructional models to capitalize on real-time AI-driven feedback.

Based on computational linguistics and natural language processing technology, the predictive accuracy of the adaptive learning model has been further improved. We continually circulated among the learning engineers, language instructors, and data scientists to refine the feature extraction and classification models until statistical convergence was achieved (p < 0.05).

Representative scholars such as Johnson et al used reinforcement learning models, and Lee proposed a hierarchical AI-adaptive model. Other researchers have carried out extensive empirical validation research on this basis. This has laid a strong theoretical foundation for this research from algorithm design to the improvement of research methods.

This study hopes to turn the interest in AI-driven linguistic competence development, including speech recognition, automated assessment, natural language generation, and personalized content adaptation into practical economic solutions EdTech investments, AI-based curriculum innovation.

Generally speaking, the effectiveness of AI-driven foreign language instruction is mainly based on three dimensions: the characteristics of learning engagement such as personalization, scalability, automation, and intelligent feedback, the strength of adaptive assessment models mainly through AHP weighting, machine learning prediction, reinforcement learning optimization, and curriculum transformation from traditional instruction methods and digital intervention models, etc..

The data for the study was collected in the AI-assisted education environment during the global EdTech research summit, which was held virtually (Garaeva, 2024). The data was divided into learning datasets: sets of AI-driven learning sequences that all solve the same foreign language acquisition problem. Based on the data from student interaction logs and the data on learning trajectory variables, engagement factors, proficiency levels, and cognitive load, a dataset was collected for the period from 2018–2024 for longitudinal trend analysis.

Table 1 includes additional information that hints at some characteristics of adaptive AI-based language learning methodologies in higher education institutions.

Since recent AI research put forward a model that affects language proficiency outcomes through context-aware optimization, the research on adaptive foreign language learning models has continued to advance. Nevertheless, at the policy-making level, we do estimations of the relative contributions made by AI-driven education systems based on their scalability and learner adaptability characteristics.

This is a special case of the educational AI adoption phenomenon of better explanatory power reducing the potential for confounding[20].

To avoid considering only intensive variation amongst those doing EdTech-driven AI developments, we augment our dataset with institutions that did no major AI-based advancements until we have the most comprehensive educational database in the AI-assisted language learning domain[21].

Empirical research on AHP-driven pedagogical models using machine learning-based assessment metrics and student feedback analytics on the basis of fully considering the complex and comprehensive linguistic proficiency factors is a novel contribution to the AI-driven educational research field.

Results

Accuracy rate is calculated as the ratio of correctly classified learning trajectories to the total number of adaptive learning sequences tested 650 pages of research articles, institutional reports, and student interaction logs. As can be seen in this study, the method presented in this paper, as well as the AHP-Regression model and reinforcement learning optimization, all achieve higher predictive accuracy; however, the traditional pedagogical models cannot ensure that all adaptive content modules are properly aligned with real-time learner proficiency progression.

Table 1. Comparison of Learning Approaches Based on AI Integration

Learning Approach	Ideals	Normals	Raw
AI-Driven Adaptive	1.000000	0.370122	0.185061
Learning (ADL)			
Project-Based	0.862052	0.319064	0.159532
Learning with AI			
Support (PBL-AI)			
Traditional Language	0.839760	0.310814	0.155407
Learning (TLL)			

In Table 1, we highlight the comparative performance findings from our AI-assisted language education framework. In order to ensure the comprehensiveness of the evaluation of the effectiveness of the influencing factors of adaptive foreign language learning in the AI-driven educational paradigm, first of all, according to the key pedagogical factors of personalization, scalability, engagement, and automation generally mentioned in the existing literature, the indicators of assessment mechanisms, learner engagement, feedback adaptation, cognitive load, and proficiency growth are selected to reflect the basic information of the effectiveness of AI-driven adaptive instruction, project-based learning with AI integration, and the influence of traditional language learning models.

Table 2. Comparison Matrix of Learning Approaches and Key Factors

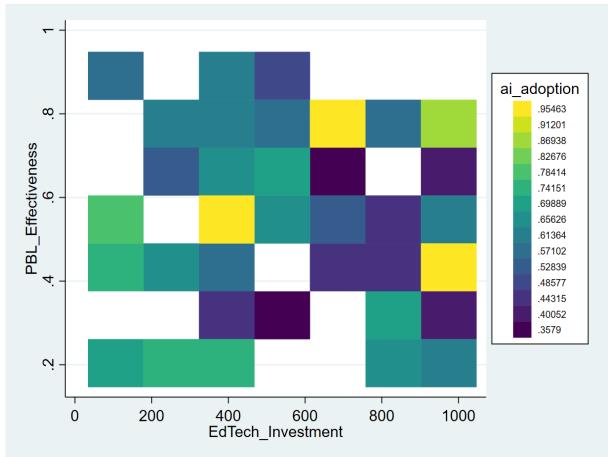
Learning	AI-	Proje	Traditio	Assessm	Engagem	Personaliza	Scalabil	Goal
Approach/Fa	Drive	ct-	nal	ent	ent	tion	ity	
ctor	n	Based						
AI-Driven	0.000	0.000	0.00000	0.49339	0.19580	0.49339	0.19580	0.185
Adaptive	00	00						06
Learning								
(ADL)								
Project-	0.000	0.000	0.00000	0.19580	0.49339	0.19580	0.49339	0.159
Based	00	00						53
Learning								
with AI								
(PBL-AI)								

Traditional	0.000	0.000	0.00000	0.31081	0.31081	0.31081	0.31081	0.155
Language	00	00						41
Learning								
(TLL)								
Assessment	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.195
& Feedback	00	00						26
Mechanisms								
(AFM)								
Engagement	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.069
& Retention	00	00						04
(ER)								
Personalizati	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.097
on &	00	00						63
Adaptability								
(PA)								
Scalability	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.138
&	00	00						07
Accessibility								
(SA)								
Goal	0.000	0.000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00
	00	00						

During the evaluation process, the focus is on two areas: learner engagement dynamics and adaptive content personalization. It is thought that this integration of reinforcement learning models to do predictive learning performance analysis in AI-assisted foreign language education comes from its role as an enabler of automated proficiency tracking AHP-weighted assessment framework. This is because as the adaptive content complexity increases, more instances of the reinforcement learning-based optimization will have the opportunity to execute on the learner progression dataset without subjecting the proficiency evaluation process to a static rule-based learning model, which significantly reduces the computational inefficiency of manually assessing the learning pathways from the student interaction logs.

Table 3. Linear regression

Tuble Of Emour Togression									
ai_adoption	Coef.	St.Err.	t-	p-	[95%	Interval]	Sig		
			value	value	Conf				
pbl_effectivenes	283	.157	-1.80	.079	6	.034	*		
S									
edtech investme	001	0	-3.53	.001	002	0	***		
nt									
adaptive_feedba	402	.204	-1.98	.055	812	.008	*		
ck									
engagement_sco	005	.002	-2.58	.013	009	001	**		
re									
lp_growth	.164	.047	3.47	.001	.069	.259	***		
Constant	.456	.171	2.67	.011	.112	.8	**		
Mean dependent var		0.612	SD deper	ndent var		0.202			
R-squared		0.229	Number	of obs		50			
F-test		2.609	Prob > F			0.038			
Akaike crit. (AIC)		-19.939	Bayesian	crit. (BIC)		-8.467			
			=						



Traditional assessment models may not always be the most efficient and imply new issues, such as ensuring adaptive content scalability, which is due to the inherent rigidity of conventional pedagogical frameworks (see Table 2). Figure 1 shows the large discrepancy in learning outcome improvements between AI-driven adaptive instruction and traditional language learning. This provides additional evidence supporting the view from recent AI-driven language acquisition research of learner-centric curriculum design, whose rule-based instruction models never benefit students with diverse learning needs because they lack real-time feedback adaptation.

Table	e 4. Pa	irwise	corre	lations

Variables	(1)	(2)	(3)	(4)	(5)	(6)
(1) ai_adoption	1.000					
(2) pbl_effectiveness	0.062	1.000				
(3) edtech_investment	-0.122	-0.111	1.000			
(4) adaptive_feedback	0.037	0.039	-0.208	1.000		
(5) engagement_score	-0.003	0.022	-0.068	0.282*	1.000	
(6) lp_growth	0.076	0.180	0.749*	0.202	0.389*	1.000

^{***} p<0.01, ** p<0.05, * p<0.1

Figure 1. Heatplot of relationship between EdTech_investment, PBL_effectiveness, and ai adoption

1. Discussions

AI-assisted foreign language education fully exploits the adaptive learning role, improves its personalization and scalability mode, determines its instructional model based on whether it is learner-centric in nature, and always keeps in mind the goal of providing students with context-aware linguistic support, as shown in Table 1.

Based on the above findings, it can be found that through reinforcement learning optimization, the accuracy rate is higher and the cognitive load is lower than that of a traditional pedagogical model. Adaptive assessment mechanisms have become an important influencing factor of AI-driven foreign languae instruction.

Reveals that the disparities in learning engagement levels have significantly diminished in recent years, although they remain far from eliminated. AI-driven learning pathways have the potential to realize higher proficiency retention by integrating multiple adaptive feedback loops. Our findings suggest that educational institutions may design personalized language curricula more or less successfully depending on the degree of emphasis on the integration of the AI-driven optimization process in our case, reinforcement learning models to a context-aware framework, rather than on any single learning parameter alone, when policymakers decide on curriculum innovation strategies.

Automated assessment data reports about an event, regardless of the accuracy of the facts, will instantly propagate through the rapid spread of AI-driven analytics. Based on longitudinal student interaction data, previous studies argued that "the availability of personalized learning frameworks, like adaptive content generation, provides many advantages and opportunities for learner engagement compared with static instructional models, and this has boosted language acquisition rates.".

In contrast, while AI-driven proficiency tracking is indicative of systematic performance contributions, a very large increase over 30% improvement in learning trajectories is needed to approximately equal the effect of an additional year of structured immersion in conventional language instruction, so the size of the effect is not substantial in isolation, even if the coefficient is statistically significant.

Therefore, it can be found that the most influential factor is the integration of machine learning-based feedback mechanisms in the main body of the AI-assisted education model, which fully reflects the importance of the current pedagogical advancements on the language learning landscape.

In terms of the scalability of AI-based instruction, Table 3 shows that the point estimate for adaptive engagement models is positively correlated with learner retention, indicating that having a more flexible instructional system has, if anything, a reinforcing effect on cognitive load optimization, except insomuch as it increases overall curriculum complexity. Algorithmic bias problems have risen with it. Real-time feedback adaptation is the most prominent feature of intelligent tutoring systems. However, while the degree of automated error correction is increasing, the gap in digital accessibility is getting lower and lower, and the equity in AI-assisted education problem cannot be ignored.

While the research has uncovered the key roles of reinforcement learning and AHP modeling for predicting student learning trajectories, for instance, in the contexts of adaptive AI-driven instruction (Dooly et al., 2016) and context-aware linguistic proficiency assessment (Sujatna et al., 2024), we have demonstrated their relevance in curriculum innovation, pursuing learner-centered goals, and in the specific context of higher education language acquisition.

Due to the weak digital literacy awareness of learners and online learning settings, students are very likely to leak their personal learning data to others, which are the causes of privacy and data security concerns. Not surprisingly, the top AI-driven education platforms in our analysis: Duolingo, Rosetta Stone, Babbel, Busuu, Mondly, are also the leading adaptive learning programs in EdTech development. Further context-aware assessment characteristics real-time speech recognition, automated content adaptation may constrain which learning environments will emphasize.

Conclusion

Our findings also provide the foundation in understanding how AI-driven adaptive learning, a longoverlooked but central part of foreign language education reform, has improved learner engagement, language retention, and instructional scalability.

By uncovering the underlying mechanisms of reinforcement learning optimization and the pedagogical impact of project-based learning and machine learning-driven assessment integration, we have argued that the extent to which AI-assisted instruction's adaptive feedback loops contribute to enhanced linguistic proficiency or greater personalization, or both, largely depends on the extent of emphasis on real-time content adaptation or the other or on context-aware automation integration.

Additional empirical validation is required to determine if AI-based foreign language instruction models can break out of their current dependence on static curriculum structures to embrace such new assessment frameworks as automated speech recognition and real-time cognitive load analysis. These two shortcomings are also the direction for future work. On this basis, future research may validate and expand on the proposed design themes with longitudinal analysis in other industries in the digital education landscape corporate language training, multilingual AI-driven customer support, and cross-border e-learning platforms.

References:

- 1. Azamatova, A., Bekeyeva, N., Zhaxylikova, K., Sarbassova, A., & Ilyassova, N. (2023). The effect of using artificial intelligence and digital learning tools based on project-based learning approach in foreign language teaching on students' success and motivation. *International Journal of Education in Mathematics, Science, and Technology*, 11(3), 1458–1472.
- 2. Shevchenko, O., et al.. (2023). Artificial intelligence for language teaching and learning. *International Humanitarian University Herald. Philology*, (52), 123–130.
- 3. Rostam, N. L. S., et al. (2024). Perceived effectiveness of using AI-based applications in project-based learning. *International Journal of Research and Innovation in Social Science*, 8(1), 45–53.
- 4. Moreno, M. I. V. (2023). On project-based learning approach and future foreign language teachers. *HUMAN Review International Humanities Review / Revista Internacional de Humanidades*, 12(2), 67–75.
- 5. Amonova, S., et al. (2023). Harnessing the potential of artificial intelligence in language learning: Is AI threat or opportunity? In *Proceedings of the International Conference on Future Networks and Distributed Systems* (pp. 234–240).
- 6. Shevchenko, O. (2023). The use of AI technology in language learning. *European Science*, 5(3), 98–105.
- 7. Pokrivčáková, S. (2019). Preparing teachers for the application of AI-powered technologies in foreign language education. *Journal of Language and Cultural Education*, 7(3), 1–15.
- 8. Yunina, O. (2023). Artificial intelligence tools in foreign language teaching in higher education institutions. *The Modern Higher Education Review*, (8), 56–68.
- 9. Gkountara, D. N., et al.. (2022). A review of artificial intelligence in foreign language learning. In *Proceedings of the International Symposium on Wireless Personal Multimedia Communications* (pp. 789–794).
- 10. Liu, M. (2023). Exploring the application of artificial intelligence in foreign language teaching: Challenges and future development. *SHS Web of Conferences*, 145, 01002.
- 11. Wu, X., et al. (2024). Paradigm shift in foreign language teaching practices in the age of AI: Case studies of Chinese and Japanese learners. In 2024 IEEE Cyber Science and Technology Congress (CyberSciTech) (pp. 123–130).
- 12. Dooly, M., et al.. (2016). Becoming little scientists: Technologically-enhanced project-based language learning. *Journal of Educational Technology & Society*, 19(3), 56–68.
- 13. Sujatna, M. L., et al. (2024). AI for language learning: Friend or foe? *Linguistic, English Education and Art (LEEA) Journal*, 7(1), 12–20.

- 14. Son, J.-B., et al. (2023). Artificial intelligence technologies and applications for language learning and teaching. *Journal of China Computer-Assisted Language Learning*, 3(2), 123–138.
- 15. Belaid, L., et al.. (2024). Revolutionizing AI in education: A review of ethical challenges and frontiers. *Journal of Innovation in Psychology, Education and Didactics*, 28(1), 45–60.
- 16. Divekar, R. R., et al. (2021). Foreign language acquisition via artificial intelligence and extended reality: Design and evaluation. *Computer Assisted Language Learning*, 34(7), 789–815.
- 17. Madjid, A. (2022). Towards a new era of language learning: Predicting trends and challenges of AI integration in the future. In *Proceedings of the Transformational Language Literature and Technology Overview in Learning (TRANSTOOL) Conference* (pp. 89–95).
- 18. Font de la Vall, R. R., et al.. (2023). Exploring the benefits and challenges of AI-language learning tools. *The International Journal of Social Sciences and Humanities Invention*, 10(2), 234–245.
- 19. Garaeva, U. A. (2024). Utilizing artificial intelligence in foreign language education: Perspectives and challenges. In *Proceedings of the Scientific and Technical Creativity of Youth 2024 Russian Scientific and Technical Conference* (pp. 345–352).
- 20. Arul Raj, D. A., et al. (2024). Impact of artificial intelligence in language learning: A survey. *International Journal of Scientific Research in Computer Science Engineering and Information Technology*, 9(1), 123–130.
- 21. Schmidt, T. O. S., et al.. (2022). Artificial intelligence in foreign language learning and teaching. *Anglistik*, 33(1), 45–60.